
MATH 245 F17, Exam 2 Solutions

1. Carefully define the following terms: predicate, ∀x ∈ D,P (x), counterexample, Proof by
Contradiction Theorem.

A predicate is a collection of propositions, indexed by one or more free variables, each drawn
from its domain. The expression ∀x ∈ D,P (x) is a proposition that is T if P (x) is true for
every x ∈ D, and F otherwise. A counterexample is an element of a domain that makes
a predicate false. The Proof by Contradiction theorem states that for propositions p, q, if
(p ∧ ¬q) ≡ F , then p→ q is T .

2. Carefully define the following terms: Nonconstructive Existence theorem, Proof by Induction,
Proof by Reindexed Induction, Proof by Strong Induction.

The Nonconstructive Existence theorem states that if (∀x ∈ D,¬P (x)) ≡ F , then ∃x ∈
D,P (x) is true. To prove ∀x ∈ N, P (x) by induction, we prove both that P (1) is true, and
that ∀x ∈ N, P (x) → P (x + 1) is true. To prove ∀x ∈ N, P (x) by reindexed induction,
we prove both that P (1) is true, and that ∀x ∈ N with x ≥ 2, P (x − 1) → P (x). To
prove ∀x ∈ N, P (x) by strong induction, we prove both that P (1) is true, and that ∀x ∈ N,
P (1) ∧ P (2) ∧ · · · ∧ P (x)→ P (x + 1) is true.

3. Prove that for all n ∈ N,
n∑

i=1

i =
n(n + 1)

2
.

Proof by (ordinary) induction on n.

Base case (n = 1): The LHS has just one summand, namely 1. The RHS is 1(2)
2

= 1.

Inductive case: Assume that
∑n

i=1 i = n(n+1)
2

. The next summand is n + 1, which we add to

both sides, to get
∑n+1

i=1 i = (n+1)+
∑n

i=1 i = (n+1)+ n(n+1)
2

= (n+1)(1+ n
2
) = (n+1)2+n

2
=

(n+1)(n+2)
2

.

4. Prove or disprove: ∀x ∈ Z, |7x + 20| > 1.

The statement is false. A counterexample is x? = −3, for which |7x? + 20| = | − 21 + 20| =
|− 1| = 1, which is not strictly greater than 1. In fact, this happens to be the only counterex-
ample.

5. Prove or disprove: ∀x ∈ R ∃y ∈ R, x2 < y2 < x2 + 1.
The statement is true. Let x ∈ R be arbitrary. We must choose y, based on a side calculation.

One possible choice is y =
√
x2 + 1

2
. Now y2 = x2 + 1

2
, and since x2 < x2 + 1

2
< x2 + 1, we get

x2 < y2 < x2 + 1.

6. Prove or disprove: ∃y ∈ R ∀x ∈ R, x2 < y2 < x2 + 1.
The statement is false. To disprove, we let y ∈ R be arbitrary. We must now choose x, based
on a side calculation, to falsify x2 < y2 < x2 + 1. One possible choice is x = y. This falsifies
x2 < y2, and hence x2 < y2 < x2 + 1 (which means (x2 < y2) ∧ (y2 < x2 + 1)).

7. Let Fn denote the Fibonacci numbers. Prove that ∀n ∈ N, F2n =
n−1∑
i=0

F2i+1.

This is proved with (ordinary) induction on n.



Base case (n = 1): The LHS is F2 = 1, while the RHS is a single summand, namely F1 = 1.
Inductive case: Assume that F2n =

∑n−1
i=0 F2i+1. The last summand is F2(n−1)+1 = F2n−1.

The next summand will be F2n+1, so we add this term to both sides, to get
∑n

i=0 F2i+1 =
F2n+1 +

∑n−1
i=0 F2i+1 = F2n+1 + F2n = F2n+2, where we used the Fibonacci recurrence to

conclude that F2n+1 + F2n = F2n+2.

8. Let x ∈ R. Prove that 2bxc ≤ b2xc ≤ 2bxc+ 1.

Solution 1: By a theorem (5.18) in the book, bxc + byc ≤ bx + yc ≤ bxc + byc + 1. Now set
y = x to get bxc+ bxc ≤ bx + xc ≤ bxc+ bxc+ 1; the desired result follows.
Solution 2: Since x ≥ bxc, also 2x ≥ 2bxc. We apply a theorem (5.16) in the book to conclude
that b2xc ≥ b2bxcc = 2bxc, since 2bxc ∈ Z. Similarly, since x ≤ bxc+1, also x+x ≤ x+bxc+1,
so we again apply theorem 5.16 to conclude that bx+ xc ≤ bx+ bxc+ 1c = bxc+ bxc+ 1, by
another theorem (5.17).

9. Let n ∈ N. Prove that there is at most one a ∈ N satisfying a2 ≤ n < (a + 1)2.

Suppose that a, b ∈ N with a2 ≤ n < (a + 1)2 and also b2 ≤ n < (b + 1)2. We have
a2 ≤ n < (b + 1)2; taking square roots, we conclude that a < b + 1. Similarly, we have
b2 ≤ n < (a + 1)2; taking square roots, we conclude that b < a + 1 and hence b − 1 < a.
Combining, we get b− 1 < a < b+ 1. Applying a theorem from the book (1.12), since a, b are
integers, we conclude that a = b.

10. Prove that
√

5 is irrational.

We argue by way of contradiction. We suppose that
√

5 is rational. We can then express√
5 = a

b
where a, b are both integers, b 6= 0, and a, b have no factors in common. Squaring

both sides, we get 5 = a2

b2
and hence 5b2 = a2. Thus 5|a2. Since 5 is prime, in fact 5|a. Hence

there is some integer c with a = 5c. We substitute to get 5b2 = a2 = (5c)2 = 25c2. Dividing
by 5 we get b2 = 5c2. Hence 5|b2, and since 5 is prime in fact 5|b. But now a, b have 5 in
common as a factor, which is a contradiction.


