MATH 245 F17, Exam 2 Solutions

1. Carefully define the following terms: predicate, $\forall x \in D, P(x)$, counterexample, Proof by Contradiction Theorem.
A predicate is a collection of propositions, indexed by one or more free variables, each drawn from its domain. The expression $\forall x \in D, P(x)$ is a proposition that is T if $P(x)$ is true for every $x \in D$, and F otherwise. A counterexample is an element of a domain that makes a predicate false. The Proof by Contradiction theorem states that for propositions p, q, if $(p \wedge \neg q) \equiv F$, then $p \rightarrow q$ is T.
2. Carefully define the following terms: Nonconstructive Existence theorem, Proof by Induction, Proof by Reindexed Induction, Proof by Strong Induction.
The Nonconstructive Existence theorem states that if $(\forall x \in D, \neg P(x)) \equiv F$, then $\exists x \in$ $D, P(x)$ is true. To prove $\forall x \in \mathbb{N}, P(x)$ by induction, we prove both that $P(1)$ is true, and that $\forall x \in \mathbb{N}, P(x) \rightarrow P(x+1)$ is true. To prove $\forall x \in \mathbb{N}, P(x)$ by reindexed induction, we prove both that $P(1)$ is true, and that $\forall x \in \mathbb{N}$ with $x \geq 2, P(x-1) \rightarrow P(x)$. To prove $\forall x \in \mathbb{N}, P(x)$ by strong induction, we prove both that $P(1)$ is true, and that $\forall x \in \mathbb{N}$, $P(1) \wedge P(2) \wedge \cdots \wedge P(x) \rightarrow P(x+1)$ is true.
3. Prove that for all $n \in \mathbb{N}, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

Proof by (ordinary) induction on n.
Base case $(n=1)$: The LHS has just one summand, namely 1 . The RHS is $\frac{1(2)}{2}=1$.
Inductive case: Assume that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$. The next summand is $n+1$, which we add to both sides, to get $\sum_{i=1}^{n+1} i=(n+1)+\sum_{i=1}^{n} i=(n+1)+\frac{n(n+1)}{2}=(n+1)\left(1+\frac{n}{2}\right)=(n+1) \frac{2+n}{2}=$ $\frac{(n+1)(n+2)}{2}$.
4. Prove or disprove: $\forall x \in \mathbb{Z},|7 x+20|>1$.

The statement is false. A counterexample is $x^{\star}=-3$, for which $\left|7 x^{\star}+20\right|=|-21+20|=$ $|-1|=1$, which is not strictly greater than 1 . In fact, this happens to be the only counterexample.
5. Prove or disprove: $\forall x \in \mathbb{R} \exists y \in \mathbb{R}, x^{2}<y^{2}<x^{2}+1$.

The statement is true. Let $x \in \mathbb{R}$ be arbitrary. We must choose y, based on a side calculation. One possible choice is $y=\sqrt{x^{2}+\frac{1}{2}}$. Now $y^{2}=x^{2}+\frac{1}{2}$, and since $x^{2}<x^{2}+\frac{1}{2}<x^{2}+1$, we get $x^{2}<y^{2}<x^{2}+1$.
6. Prove or disprove: $\exists y \in \mathbb{R} \forall x \in \mathbb{R}, x^{2}<y^{2}<x^{2}+1$.

The statement is false. To disprove, we let $y \in \mathbb{R}$ be arbitrary. We must now choose x, based on a side calculation, to falsify $x^{2}<y^{2}<x^{2}+1$. One possible choice is $x=y$. This falsifies $x^{2}<y^{2}$, and hence $x^{2}<y^{2}<x^{2}+1$ (which means $\left(x^{2}<y^{2}\right) \wedge\left(y^{2}<x^{2}+1\right)$).
7. Let F_{n} denote the Fibonacci numbers. Prove that $\forall n \in \mathbb{N}, F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$.

This is proved with (ordinary) induction on n.

Base case $(n=1)$: The LHS is $F_{2}=1$, while the RHS is a single summand, namely $F_{1}=1$. Inductive case: Assume that $F_{2 n}=\sum_{i=0}^{n-1} F_{2 i+1}$. The last summand is $F_{2(n-1)+1}=F_{2 n-1}$. The next summand will be $F_{2 n+1}$, so we add this term to both sides, to get $\sum_{i=0}^{n} F_{2 i+1}=$ $F_{2 n+1}+\sum_{i=0}^{n-1} F_{2 i+1}=F_{2 n+1}+F_{2 n}=F_{2 n+2}$, where we used the Fibonacci recurrence to conclude that $F_{2 n+1}+F_{2 n}=F_{2 n+2}$.
8. Let $x \in \mathbb{R}$. Prove that $2\lfloor x\rfloor \leq\lfloor 2 x\rfloor \leq 2\lfloor x\rfloor+1$.

Solution 1: By a theorem (5.18) in the book, $\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor \leq\lfloor x\rfloor+\lfloor y\rfloor+1$. Now set $y=x$ to get $\lfloor x\rfloor+\lfloor x\rfloor \leq\lfloor x+x\rfloor \leq\lfloor x\rfloor+\lfloor x\rfloor+1$; the desired result follows.
Solution 2: Since $x \geq\lfloor x\rfloor$, also $2 x \geq 2\lfloor x\rfloor$. We apply a theorem (5.16) in the book to conclude that $\lfloor 2 x\rfloor \geq\lfloor 2\lfloor x\rfloor\rfloor=2\lfloor x\rfloor$, since $2\lfloor x\rfloor \in \mathbb{Z}$. Similarly, since $x \leq\lfloor x\rfloor+1$, also $x+x \leq x+\lfloor x\rfloor+1$, so we again apply theorem 5.16 to conclude that $\lfloor x+x\rfloor \leq\lfloor x+\lfloor x\rfloor+1\rfloor=\lfloor x\rfloor+\lfloor x\rfloor+1$, by another theorem (5.17).
9. Let $n \in \mathbb{N}$. Prove that there is at most one $a \in \mathbb{N}$ satisfying $a^{2} \leq n<(a+1)^{2}$.

Suppose that $a, b \in \mathbb{N}$ with $a^{2} \leq n<(a+1)^{2}$ and also $b^{2} \leq n<(b+1)^{2}$. We have $a^{2} \leq n<(b+1)^{2}$; taking square roots, we conclude that $a<b+1$. Similarly, we have $b^{2} \leq n<(a+1)^{2}$; taking square roots, we conclude that $b<a+1$ and hence $b-1<a$. Combining, we get $b-1<a<b+1$. Applying a theorem from the book (1.12), since a, b are integers, we conclude that $a=b$.
10. Prove that $\sqrt{5}$ is irrational.

We argue by way of contradiction. We suppose that $\sqrt{5}$ is rational. We can then express $\sqrt{5}=\frac{a}{b}$ where a, b are both integers, $b \neq 0$, and a, b have no factors in common. Squaring both sides, we get $5=\frac{a^{2}}{b^{2}}$ and hence $5 b^{2}=a^{2}$. Thus $5 \mid a^{2}$. Since 5 is prime, in fact $5 \mid a$. Hence there is some integer c with $a=5 c$. We substitute to get $5 b^{2}=a^{2}=(5 c)^{2}=25 c^{2}$. Dividing by 5 we get $b^{2}=5 c^{2}$. Hence $5 \mid b^{2}$, and since 5 is prime in fact $5 \mid b$. But now a, b have 5 in common as a factor, which is a contradiction.

